
Style Transfer
CS 20: TensorFlow for Deep Learning Research

Lecture 9
2/9/2017

1

2

Assignment 2 is out. It’s fun, but tricky. Start early.

Sign up for check-ins/IGs with the course staff!
cs20-win1718-staff@lists.stanford.edu

Announcements

mailto:cs20-win1718-staff@lists.stanford.edu

3

Guest lectures next week

Alec Radford
OpenAI
Topic: GANs
2/9

Danijar Hafner
Google Brain
Topic: Variational Autoencoder
2/14

Agenda

TFRecord

Getting to know each other!

Style Transfer

4

TFRecord

5

6

1. The recommended format for TensorFlow
2. Binary file format

What’s TFRecord

7

1. The recommended format for TensorFlow
2. Binary file format

a serialized tf.train.Example protobuf object

What’s TFRecord

8

● make better use of disk cache

Why binary

9

● make better use of disk cache
● faster to move around

Why binary

10

● make better use of disk cache
● faster to move around
● can handle data of different types

e.g. you can put both images and labels in one place

Why binary

11

● Feature: an image
● Label: a number

Convert to TFRecord format

12

Convert to TFRecord format
Step 1: create a writer to write tfrecord to that file
writer = tf.python_io.TFRecordWriter(out_file)

Step 2: get serialized shape and values of the image
shape, binary_image = get_image_binary(image_file)

Step 3: create a tf.train.Features object
features = tf.train.Features(feature={'label': _int64_feature(label),
 'shape': _bytes_feature(shape),
 'image': _bytes_feature(binary_image)})

Step 4: create a sample containing of features defined above
sample = tf.train.Example(features=features)

Step 5: write the sample to the tfrecord file
writer.write(sample.SerializeToString())
writer.close()

13

Step 1: create a writer to write tfrecord to that file
writer = tf.python_io.TFRecordWriter(out_file)

Step 2: get serialized shape and values of the image
shape, binary_image = get_image_binary(image_file)

Step 3: create a tf.train.Features object
features = tf.train.Features(feature={'label': _int64_feature(label),
 'shape': _bytes_feature(shape),
 'image': _bytes_feature(binary_image)})

Step 4: create a sample containing of features defined above
sample = tf.train.Example(features=features)

Step 5: write the sample to the tfrecord file
writer.write(sample.SerializeToString())
writer.close()

Convert to TFRecord format

Serialize different data type
into byte strings

14

def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

Convert to TFRecord format

15

Using TFRecordDataset

Read TFRecord

16

dataset = tf.data.TFRecordDataset(tfrecord_files)
dataset = dataset.map(_parse_function)

Read TFRecord

Parse each tfrecord_file into
different features that we want

In this case, a tuple of
(label, shape, image)

17

dataset = tf.data.TFRecordDataset(tfrecord_files)
dataset = dataset.map(_parse_function)

def _parse_function(tfrecord_serialized):
 features={'label': tf.FixedLenFeature([], tf.int64),
 'shape': tf.FixedLenFeature([], tf.string),
 'image': tf.FixedLenFeature([], tf.string)}

 parsed_features = tf.parse_single_example(tfrecord_serialized, features)

 return parsed_features['label'], parsed_features['shape'], parsed_features['image']

Read TFRecord

See
08_tfrecord_example.py

18

Assignment 2:
Style Transfer

19

Yes, that Kristen Stewart!

Deadpool

Guernica

Deadpool and Guernica

Logan Engstrom’s fast-style-transfer @ GitHub

27

The math is aight
but the implementation is tricky

Style Transfer

28

Find a new image:
● whose content is closest to the content image and
● whose style is closest to the style image

Mathy stuff

29

● Content loss
Measure the content loss between the content of the generated image
and the content of the content image

● Style loss
Measure the style loss between the style of the generated image and
the style of the style image

It’s all about the loss functions

30

31

32

A convolutional network has many layers, each layer is
a function that extracts certain features

Feature maps

33Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision.
Springer, Cham, 2014.

34

Feature visualization have shown that:

● lower layers extract features related to content
● higher layers extract features related to style

Content/style of an image

35

● Content loss
Measure the loss between the feature maps in the content layer
of the generated image and the content image

● Style loss
Measure the loss between the feature maps in the style layers of
the generated image and the style image

Loss functions revisited

36

Loss functions revisited

● Content loss
To measure the content loss between the feature map in the content
layer of the generated image and the content image

Paper: ‘conv4_4’

● Style loss
To measure the style loss between the gram matrices of feature maps in
the style layers of the generated image and the style image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]

37

● Content loss
To measure the content loss between the feature map in the content
layer of the generated image and the content image

Paper: ‘conv4_4’

● Style loss
To measure the style loss between the gram matrices of feature maps in
the style layers of the generated image and the style image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]

Weighted sum. Give more weight to deeper layers
E.g. 1.o for ‘conv1_1’, 2.0 for ‘conv2_1’, ...

Loss functions revisited

38
Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).

39

How to find these magic feature maps?

40

Use pretrained weights (functions) such
as VGG, AlexNet, GoogleNet

41

● Content loss

● Style loss

Loss functions revisited

42

Optimizes the initial image to minimize the combination of the two losses

Do not optimize the weights!

Optimizer

43

1. Train input instead of weights

Tricky implementation details

44

1. Train input instead of weights
2. Multiple tensors share the same variable to avoid

assembling identical subgraphs

Tricky implementation details

45

1. Train input instead of weights
2. Multiple tensors share the same variable to avoid

assembling identical subgraphs
3. Use pre-trained weights (from VGG-19)

a. Weights and biases already loaded for you
b. They are numpy, so need to be converted to

tensors
c. Must not be trainable!!

Tricky implementation details

46

Progress

47

Cool story, bro. So what?

48

● Snapchat filters
● Google photos
● Movies!!!

Fun applications

49

Is art exclusively a human domain?

Next class

GANs by Alec Radford!

Feedback: chiphuyen@cs.stanford.edu

Thanks!

50

