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Assignment 2 is out. It’s fun, but tricky. Start early.

Sign up for check-ins/IGs with the course staff!
cs20-win1718-staff@lists.stanford.edu 

Announcements

mailto:cs20-win1718-staff@lists.stanford.edu
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Guest lectures next week

Alec Radford
OpenAI
Topic: GANs
2/9

Danijar Hafner
Google Brain
Topic: Variational Autoencoder
2/14



Agenda

TFRecord

Getting to know each other!

Style Transfer
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TFRecord
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1. The recommended format for TensorFlow
2. Binary file format

What’s TFRecord
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1. The recommended format for TensorFlow
2. Binary file format

a serialized tf.train.Example protobuf object

What’s TFRecord
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● make better use of disk cache

Why binary



9

● make better use of disk cache
● faster to move around

Why binary
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● make better use of disk cache
● faster to move around 
● can handle data of different types

e.g. you can put both images and labels in one place

Why binary
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● Feature: an image
● Label: a number

Convert to TFRecord format
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Convert to TFRecord format
# Step 1: create a writer to write tfrecord to that file
writer = tf.python_io.TFRecordWriter(out_file)

# Step 2: get serialized shape and values of the image
shape, binary_image = get_image_binary(image_file)

# Step 3: create a tf.train.Features object
features = tf.train.Features(feature={'label': _int64_feature(label),
                                    'shape': _bytes_feature(shape),
                                    'image': _bytes_feature(binary_image)})

# Step 4: create a sample containing of features defined above
sample = tf.train.Example(features=features)

# Step 5: write the sample to the tfrecord file
writer.write(sample.SerializeToString())
writer.close()
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# Step 1: create a writer to write tfrecord to that file
writer = tf.python_io.TFRecordWriter(out_file)

# Step 2: get serialized shape and values of the image
shape, binary_image = get_image_binary(image_file)

# Step 3: create a tf.train.Features object
features = tf.train.Features(feature={'label': _int64_feature(label),
                                    'shape': _bytes_feature(shape),
                                    'image': _bytes_feature(binary_image)})

# Step 4: create a sample containing of features defined above
sample = tf.train.Example(features=features)

# Step 5: write the sample to the tfrecord file
writer.write(sample.SerializeToString())
writer.close()

Convert to TFRecord format

Serialize different data type
into byte strings
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def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

Convert to TFRecord format
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Using TFRecordDataset

Read TFRecord
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dataset = tf.data.TFRecordDataset(tfrecord_files)
dataset = dataset.map(_parse_function)

Read TFRecord

Parse each tfrecord_file into 
different features that we want

In this case, a tuple of 
(label, shape, image)
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dataset = tf.data.TFRecordDataset(tfrecord_files)
dataset = dataset.map(_parse_function)

def _parse_function(tfrecord_serialized):
    features={'label': tf.FixedLenFeature([], tf.int64),
              'shape': tf.FixedLenFeature([], tf.string),
              'image': tf.FixedLenFeature([], tf.string)}

    parsed_features = tf.parse_single_example(tfrecord_serialized, features)

    return parsed_features['label'], parsed_features['shape'], parsed_features['image']

Read TFRecord



See
08_tfrecord_example.py
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Assignment 2:
Style Transfer
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Yes, that Kristen Stewart!



Deadpool



Guernica



Deadpool and Guernica





Logan Engstrom’s fast-style-transfer @ GitHub
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The math is aight
but the implementation is tricky

Style Transfer
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Find a new image:
● whose content is closest to the content image and
● whose style is closest to the style image

Mathy stuff
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● Content loss 
Measure the content loss between the content of the generated  image 
and the content of the content image

● Style loss
Measure the style loss between the style of the generated  image and 
the style of the style image

It’s all about the loss functions
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A convolutional network has many layers, each layer is 
a function that extracts certain features

Feature maps



33Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. 
Springer, Cham, 2014.
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Feature visualization have shown that:

● lower layers extract features related to content
● higher layers extract features related to style

Content/style of an image
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● Content loss 
Measure the loss between the feature maps in the content layer 
of the generated  image and the content image

● Style loss
Measure the loss between the feature maps in the style layers of 
the generated  image and the style image

Loss functions revisited
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Loss functions revisited

● Content loss 
To measure the content loss between the feature map in the content 
layer of the generated  image and the content image

Paper: ‘conv4_4’ 

● Style loss
To measure the style loss between the gram matrices of feature maps in 
the style layers of the generated  image and the style image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]
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● Content loss 
To measure the content loss between the feature map in the content 
layer of the generated  image and the content image

Paper: ‘conv4_4’ 

● Style loss
To measure the style loss between the gram matrices of feature maps in 
the style layers of the generated  image and the style image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]

Weighted sum. Give more weight to deeper layers
E.g. 1.o for ‘conv1_1’, 2.0 for ‘conv2_1’, ...

Loss functions revisited
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Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).
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How to find these magic feature maps?
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Use pretrained weights (functions) such 
as VGG, AlexNet, GoogleNet
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● Content loss 

● Style loss

Loss functions revisited
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Optimizes the initial image to minimize the combination of the two losses

Do not optimize the weights!

Optimizer
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1. Train input instead of weights

Tricky implementation details
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1. Train input instead of weights
2. Multiple tensors share the same variable to avoid 

assembling identical subgraphs

Tricky implementation details
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1. Train input instead of weights
2. Multiple tensors share the same variable to avoid 

assembling identical subgraphs
3. Use pre-trained weights (from VGG-19)

a. Weights and biases already loaded for you
b. They are numpy, so need to be converted to 

tensors
c. Must not be trainable!!

Tricky implementation details



46

Progress
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Cool story, bro. So what?
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● Snapchat filters
● Google photos
● Movies!!!

Fun applications
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Is art exclusively a human domain?



Next class

GANs by Alec Radford!

Feedback: chiphuyen@cs.stanford.edu

Thanks!
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